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In this paper, we propose a general and efficient method to analyze the dipolar modes of aperiodic arrays of
metal nanoparticles with ellipsoidal shapes and their electromagnetic coupling with external fields. We reduce
the study of the spectral and localization properties of dipolar modes to the understanding of the spectral
properties of an operator L expressing the electric field along the chain in terms of the electric-dipole moments
within the electric quasistatic approximation. We show that, in general, the spectral properties of the L operator
are at the origin of the formation of pseudoband gaps and localized modes in aperiodic chains. These modal
properties are therefore uniquely determined by the aperiodic geometry of the arrays for a given shape of the
nanoparticles. The proposed method, which can be easily extended in order to incorporate retardation effects
and higher multipolar orders, explains in very clear terms the role of aperiodicity in the particle arrangement,
the effect of particle shapes, incoming field polarization, material dispersion, and optical losses. Our method is
applied to the simple case of linear arrays generated according to the Fibonacci sequence, which is the chief
example of deterministic quasiperiodic order. The conditions for the resonant excitation of dipolar modes in
Fibonacci chains are systematically investigated. In particular, we study the scaling of localized dipolar modes,
the enhancement of near fields, and the formation of Fibonacci pseudodispersion diagrams for chains with
different interparticle separations and particle numbers. Far-field scattering cross sections are also discussed in
detail. All results are compared with the well-known case of periodic linear chains of metal nanoparticles,
which can be derived as a special application of our general model. Our theory enables the quantitative and
predictive understanding of band-gap positions, field enhancement, scattering, and localization properties of
aperiodic arrays of resonant nanoparticles in terms of their geometry. This is central to the design of metallic
resonant arrays that, when excited by an external electromagnetic wave, manifest strongly localized and
enhanced near fields.
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I. INTRODUCTION

The understanding and the design of optical interactions
in deterministic structures without translational invariance
offer a vastly unexplored potential for the creation and con-
trol of highly localized field states. Unlike periodically ar-
ranged photonic crystal structures, deterministic aperiodic
structures �DAS� manifest unique light localization and
transport properties associated to the multifractal character of
their spatial Fourier spectra.1–4 Unlike random media, deter-
ministic aperiodic structures are defined by simple math-
ematical rules rooted in symbolic dynamics2,5–8 and finite
inflation rules,9 which encode a fascinating complexity. Ape-
riodic dielectric structures share distinctive physical proper-
ties with both periodic media, i.e., the formation of large
energy gaps, and disordered random media, i.e., the presence
of highly localized states characterized by high-field en-
hancement and anomalous transport properties.9–13

In the context of metal plasmonic nanostructures, the
study of DAS is still in its infancy. In particular, the under-
standing of electromagnetic and plasmon coupling in large
nanoparticle arrays without translational invariance provides
significant challenges to the numerical solution methods of
classical electrodynamics. Therefore, in order to fully ex-
plore the potential of aperiodic plasmonics for the design and
the demonstration of optical devices, there is currently a

strong need to formulate simple analytical methods that are
able to accurately describe the complex spectral properties of
aperiodic and fractal media at reduced computational costs.
In particular, the accurate control of electromagnetic cou-
pling and mode localization in deterministic aperiodic metal
nanostructures is appealing to a variety of nanodevice appli-
cations in the growing areas of field-enhanced nanosensors,
engineered surface-enhanced Raman scattering �SERS� sub-
strates, and optical nanoantenna arrays.

The spectral, localization, and dispersion properties of di-
polar modes in a Fibonacci linear chain of lossless spherical
nanoparticles have been studied in Ref. 14 by using a simple
matrix approach based on the electric quasistatic point-dipole
approximation. A simple Drude-type model has been used to
describe the optical response of the metal. Two-dimensional
deterministic aperiodic arrays of plasmonic nanoparticles
have also been recently discussed within a coupled dipole
approach,15 and distinctive scattering resonances have been
experimentally demonstrated and described using general-
ized Mie theory.16

In this paper, we propose a simple, general, and efficient
approach, based on the quasistatic point-dipole approxima-
tion, for analyzing both the dipolar modes in quasiperiodic
arrays of metal nanoparticles with general ellipsoidal shapes
and their coupling with an external electric field. The optical
response of the metal is described by its actual dielectric
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function, without the need of simplified analytical models.
The proposed approach has several significant advantages:
�i� a single calculation yields the frequencies and eigen-
modes of any aperiodic chain; �ii� particles with ellipsoidal
shape, dielectric functions of any form, and the coupling
with an external electric field can be considered; �iii� it
clearly establishes and separates the respective roles of the
dielectric response of the metal, optical losses, dipole polar-
ization, particle shapes, and geometrical arrangement of the
particles. Indeed, the governing equations of our model have
been formulated in such a way as to separate the effects of
the material dispersion, particle shapes, and field polariza-
tions from the geometrical arrangement of the nanoparticles.
This allows the complete understanding of the connection
between the aperiodic geometry of nanoparticles arrays, and
the resulting spectral and modal properties. The approach
enables the predictive design of band-gap frequencies, field
enhancement, and scattering properties of aperiodic arrays of
resonant nanoparticles.

In addition, the possibility to investigate the coupling with
an external electric field is very important in order to excite a
mode or a dipole distribution of interest by applying an ex-
ternal source. The understanding of the role of the geometri-
cal particle arrangement, polarization, shape, dielectric re-
sponse, and optical losses is central to the design of metallic
resonant arrays that, when excited by an external electromag-
netic wave, manifest strongly localized and enhanced near
fields.

This paper is organized as follows. In Sec. II we formu-
late the equations governing the dynamics of the electric-
dipole moments of metallic nanoparticle arrays, in the fre-
quency domain, by using the electric quasistatic
approximation. In Sec. III we outline the approach that we
propose for studying dipolar modes in a general nanoparticle
array and we discuss the coupling with an external electric
field. In Sec. IV we restrict our general approach to the very
interesting case of linear arrays of metal nanoparticles. In
Sec. V we apply our method to the study of the dipolar
modes in a linear array generated according to the quasiperi-
odic Fibonacci sequence, which is the most extensively in-
vestigated example of a quasiperiodic structure. In Sec. VI
we summarize our findings and draw our conclusions.

II. MODEL

In this section we will introduce our general model for the
description of dipolar modes and external field coupling in
metal nanoparticle arrays. The particles are considered all
equal and with ellipsoidal shapes. The axes of the ellipsoids
are all oriented along the same direction.

We describe the collective response of the array by mod-
eling each particle as a point-electric dipole �e.g., Refs.
17–19� and considering only the quasistatic contribution to
the electromagnetic interaction between the dipoles �e.g.,
Refs. 14 and 20�. We have verified that these assumptions are
valid as long as the interparticle separation is at least equal to
the characteristic linear dimension of the particles and much
smaller compared with the characteristic wavelength of the
electromagnetic field.21

Let us introduce a rectangular coordinate system
�O ,x ,y ,z�. The fundamental directions x̂ , ŷ , ẑ are chosen to
be coincident with the three principal axes of the ellipsoids
in such a way that their half lengths ax ,ay ,az verify the in-
equality ax�ay �az. The position vectors of the centers of
the ellipsoids are indicated by r1 ,r2 , . . . ,rN, where N denotes
the number of particles. We indicate with ph the electric-
dipole moment of the h-th particle and with Eh the electric-
field value at its center generated by all the particles and
external sources, in the frequency domain. The relation

ph = V0�� − �0�Eh �1�

describes the response of the h-th particle to the total electric
field Eh; �=���� is the dielectric constant of the metal, �0 is
the vacuum dielectric constant, and V0=4�axayaz /3 is the
particle volume.

The effects of the losses due to the radiation of each nano-
particle may be easily incorporated into the dielectric con-
stant � for those frequency ranges in which the electromag-
netic response of the materials can be described by classical
theories as, for example, the Drude model, �e.g., Ref. 22�. In
this case, we would add to the electron relaxation frequency
�due to interactions with phonons, electrons, lattice defects,
and impurities� a dissipation term ��2 /�0

2, where � is the
relaxation frequency due to the radiation into the far field
and �0 is the plasmon frequency of the nanoparticle without
including radiation.23

The value of the electric field at the h-th particle center
generated by the h-th particle itself Ehh is

Ehh = −
1

V0�0
Aph, �2�

where A=diag�Ax ,Ay ,Az� is the diagonal dyad of depolariz-
ing coefficients Ax ,Ay ,Az whose expressions are given in Ap-
pendix A. For a sphere we have Ax=Ay =Az=1 /3, for a pro-
late spheroid such that ax=ay �cigar shaped� we have Ax
=Ay �Az, and for an oblate spheroid such that ay =az �pan-
cake shaped� we have Ax�Ay =Az.

The value of the electric field generated by the k-th par-
ticle at the center of the h-th particle, with h�k, is given by

Ehk =
1

4��0

1

rhk
3 Bhkpk, �3�

where rhk= �rh−rk�, rhk= �rhk�, r̂hk=rhk /rhk, Bhk is the dyad
defined as

Bhk = 3r̂hkr̂hk − I , �4�

and I is the identity dyad. All the dyads Bhk are symmetric.
In conclusion the value of the total electric field at the

center of the h-th particle generated by all the particles and
the external sources is given by

Eh = −
1

V0�0
Aph +

1

4��0
�
k=1

k�h

N
1

rhk
3 Bhkpk + Eext�rh� , �5�

where Eext=Eext�r� is the electric field due to the external
sources. By combining Eqs. �1� and �5� we obtain the system
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of linear algebraic equations governing the dipole moments
p1 ,p2 , . . . ,pN:

ph

V0�� − �0�
= −

1

V0�0
Aph +

1

4��0
�
k=1

k�h

N
1

rhk
3 Bhkpk

+ Eext�rh� for h = 1,2, . . . N . �6�

III. COMPUTATIONAL METHOD

In this section we shall introduce, starting from the system
of Eq. �6�, the computational method that we have developed
to study the dipolar modes of metal nanoparticle arrays and
their coupling with the external electric field.

It is useful to rewrite the system of Eq. �6� as

����ph + �Aph −
1

3
� rc

dc
�3

�
k=1

k�h

N � dc

rhk
�3

Bhkpk�
= V0�0Eext�rh� for h = 1,N , �7�

where rc is the radius of a sphere with the same volume of
the ellipsoid, dc is the minimum distance between the centers
of two adjacent nanoparticles, and

� =
�0

���� − �0
. �8�

Note that the terms in the square brackets on the left-hand
side of Eq. �7� do not depend explicitly on the frequency: the
first term inside the brackets only depends on the particle
shape while the second one only depends on the geometrical
arrangement of the particles in the array.

The vector ph�C3 is the electric-dipole moment of the
h-th particle. Now we introduce the array vector p�C3N that
represents the collection of the electric-dipole moments. The
equation governing the collection p is

	����I + L
p = �0E0V0b , �9�

where I is the identity matrix of order 3N, b�C3N represents
the forcing term

b =
1

E0�
Eext�r1�
Eext�r2�

. . .

Eext�rN�
� , �10�

E0 is the maximum of the intensity of the external field, and
L is a 3N�3N matrix that can be partitioned into N2 3�3
blocks Lhk. The diagonal blocks Lhh are equal and are given
by

Lhh = A . �11�

The generic off diagonal block Lhk is given by �h�k�

Lhk = −
1

3
� rc

dc
�3� dc

rhk
�3

Bhk. �12�

The physical meaning of the matrix L is the following: the
3i+1, 3i+2, 3i+3-th elements of the vector −Lp /V0�0,

with i=0,1 , . . . ,N−1, are, respectively, the values of the
x ,y ,z components of the intensity of the electric field at the
center of the �i+1�-th particle, generated by the dipole col-
lection p. The quadratic form

W =
1

2�0V0
pTLp �13�

represents the energy of the electric field generated by the
dipole collection; hence the matrix L is strictly definite posi-
tive. Furthermore, it is easy to verify that L is symmetric, as
well.

By summarizing, Eq. �9� governs the dipole mode distri-
bution induced by external electromagnetic fields along
nanoparticle chains. It has been formulated in such a way as
to clearly separate the contribution due to the material prop-
erties from those due to the shapes and spatial distribution
�geometry� of the nanoparticle arrays. The diagonal blocks of
the matrix only depend on the shape while the off diagonal
blocks only depend on the positions of the particles. The
material properties only enter through ����I.

A. Mode analysis

In this section, we will derive the fundamental connection
between the geometry of the arrays and their spectral prop-
erties. In particular, we will demonstrate that the eigenvalues
and eigenvectors of the operator L are uniquely determined
by the arrangement of the nanoparticles in the array for a
given shape of the nanoparticles.

The dipolar modes of the nanoparticle array are the solu-
tions of the homogeneous matrix equation:

	��s�I + L
w = 0 . �14�

Therefore, the dipole mode wm is an eigenvector of the ma-
trix L and the corresponding natural frequencies sm=�m
+ i	m are the solutions of the equation:

��sm� = �0�1 −
1


m
� , �15�

where 
m is the eigenvalue of L associated to the eigenvector
wm. From the study of the spectral properties of the matrix L,
we shall obtain the main properties of the dipole modes of
the array. Interestingly we notice that, within the dipolar ap-
proximation used here, the dipole modes only depend on the
shape of the particles and their geometrical arrangement.

Let us consider now the eigenvalue problem:

Lw = 
w . �16�

Since the matrix L is symmetric, all its eigenvalues and the
corresponding eigenvectors are real and the eigenvectors are
orthogonal; in addition, since the matrix L is strictly definite
positive all the eigenvalues are positive. Furthermore, as we
shall see later, all the eigenvalues are less than one, thus 0
�
�1. As a consequence, the eigenfrequencies exist only
in the intervals of frequency where the real part of the di-
electric constant is negative. We normalize the eigenvectors
in such a way that
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wm
T wn = �mn for m,n = 1,2, . . . ,3N , �17�

where �mn is the Kronecker symbol and order the eigenval-
ues in such a way 
1�
2� . . . �
3N.

To solve Eq. �15� we need to know the analytical continu-
ation of ���� to the entire complex plane s=�+ i	. In gen-
eral, we do not have an analytical expression for ���� but
only a discrete set of values for its real and imaginary parts
in the frequency range of interest, as experimentally mea-
sured. Nevertheless, it is always possible to approximate ad-
equately ���� through rational functions starting from the
measured data by using standard identification techniques.
Once this approximation has been found, its analytical con-
tinuation to the entire complex plane is immediately obtained
by replacing � with s. In this way the solution of Eq. �15� is
reduced to the solution of an algebraic equation with com-
plex coefficients. For frequency ranges in which the electro-
magnetic response of the material is well described by clas-
sical models such as, for example, the Drude model �e.g.,
Ref. 22�, the expression of ���� is known analytically and
the solution of Eq. �15� becomes straightforward. The ex-
pression of the dielectric constant based on the Drude model
is

���� = �0�1 −
�p

2

��� − i��
 . �18�

where �p is the plasma frequency of the free electrons of the
metal and � is the relaxation frequency due to interactions
with phonons, electrons, lattice defects, and impurities. By
solving Eq. �15� we obtain

�m = �p�
m − � �

2�p
�2

, �19�

	m =
�

2
. �20�

Being � /�p
1, for 
m=O�1� from expression �19� we ob-
tain

�m � �p
�
m�1 −

1

2
m
� �

2�p
�2
 �21�

By summarizing, the modes of the nanoparticle chain,
which are real and orthogonal, are all the eigenvectors of the
matrix L; thus they only depend on the particle shapes and
their geometrical arrangements. On the other hand, as shown
in Eq. �21�, the natural frequencies of these eigenmodes de-
pend on the metal response, and they are the solutions of the
algebraic Eq. �15�. Due to the presence of metal losses,
which brings an extra damping factor into Eq. �21�, the di-
polar modes decay exponentially in time. This damping in-
duces an additional redshift of the system’s eigenfrequencies.

B. Coupling with the external electric field

Now we shall study the coupling of plasmonic arrays with
the external electric field by using the dipolar modes as basis
to represent the dipole distribution along the chain. The so-
lution p of system �9� may be represented through the eigen-
vectors w1 ,w2 , . . . ,w3N of the matrix L:

p = �
n=1

3N

anwn, �22�

where the coefficients a1 ,a2 , . . . ,a3N are unknown. Since the
eigenvectors are orthonormal, the coefficient an is the projec-
tion of p along the eigenvector wn,

an = wn
Tp . �23�

By substituting Eq. �22� into Eq. �9�, multiplying on the left-
hand side by wm

T , and by using Eq. �16�, we obtain

am��� = V0�0E0
cm

���� + 
m
, �24�

where the coupling coefficient cm is given by:

cm = wm
T b . �25�

It describes the coupling intensity between the external elec-
tric field and the m-th mode.

The external electric field is in resonance with the m-th
mode at the frequency �m for which the mode response
function,

Rm��� =
1

����� + 
m�
, �26�

is maximum. Since 0�
�1, the resonance frequencies exist
only in the intervals of the frequency where the real part of
the dielectric constant is negative.

If ���� is experimentally measured, the frequencies for
which Rm is maximum may be evaluated numerically. In-
stead, in the frequency ranges where the electromagnetic re-
sponse of the material is well described by analytical models
such as the Drude model �e.g., Ref. 22�, �m may be evalu-
ated analytically. By using the Drude model we obtain the
following expression for �ih:

�m =��m
2 −

1

4
�2 = �p�
m −

1

2
� �

�p
�2

. �27�

The 3 dB bandwidth of the response function Rm��� is given
by

��m = ��1 + � �

2�m
�2

. �28�

Being � /�p
1 and 
h :o�1� from Eqs. �27� and �28�, we
obtain, respectively:

�m � �p
�
m�1 −

1

4
m
� �

�p
�2
 , �29�

��m � � . �30�

In this case the intensity of the m-th mode at the resonance
frequency �m is approximately given by

am��m� � − iV0�0E0
�p

�

w�m
T b�

�
m

. �31�

By summarizing, the dipole distribution induced along the
nanoparticle chain by external electric fields has been repre-
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sented through the superposition of the dipolar modes. The
amplitude of each dipolar mode depends on three elements:
the volume of the particle, the coupling coefficient between
the external electric field and the mode, and the response
function of the mode. The resonance frequency of the mode
is the frequency at which the absolute value of its response
function is maximum. Due to the presence of optical losses,
the values of the resonance frequencies differ from the val-
ues of the natural frequencies. The selectivity of the coupling
between the array and an external electric field depends on
the 3 dB bandwidth of the mode response functions, and it is
limited by the losses and by the dispersion diagram of the
eigenvalues 
m.

IV. APPLICATION TO LINEAR NANOPARTICLE ARRAYS

We now restrict our general results to the very interesting
case of linear nanoparticle arrays.23–27 The array axis coin-
cides with the x axis of the coordinate system. In this case
the dyad Bhk is given by

Bhk = diag�2,− 1,− 1� . �32�

Since Bhk is diagonal the x components p1x , p2x , . . . , pNx, y
components p1y , p2y , . . . , pNy, and z components
p1z , p2z , . . . , pNz of the electric-dipole moments are all un-
coupled between them. As consequence, eigenvalue problem
�16� further simplifies. Let us denote the longitudinal modes
with uP= �p1x , p2x , . . . , pNx�T and the transverse ones with
u�= �p1t , p2t , . . . , pNt�T with t=y ,z. All these modes are solu-
tions of the eigenvalue problem:

Qu = �u , �33�

where the element qij of the NxN matrix Q is given by

qij = �0 for i = j ,

dc
3

�rij�3
for i � j . � �34�

Unlike the matrix L, the matrix Q is not definite positive but
it is still symmetric; hence it has both positive and negative
eigenvalues. The eigenvalues � are ordered in such a way
�1��2� . . . ��N. The corresponding eigenvalues 
S, with
s=P ,�, are given by


S = AS +
�S

3
� rc

dc
�3

� , �35�

where AP=Ax, A�=Ay ,Az, �P=−2, and ��=1. As rc /dc
→0 it results with 
S→AS and the plasmon resonances tend
to those of the single particles. The coupling effects give rise
to blueshift �redshift� for the transverse modes with ��0
���0� and vice versa for longitudinal modes. We remark
that for the consistency of the model rc /dc→0 for Ax=Ay
→1 /2, Az→0 �a needle orthogonal to the chain axis� or Ay
=Az→0, Ax→1 �a disk orthogonal to the chain axis�.

By applying the Gerschgorin first theorem28 to the com-
plete matrix Q, we obtain ����2.5. Since ����2.5 it follows
that 0�
S�1. The property 0�
S�1 is more general,29

and may be shown by starting from the equation governing

the polarization field density in the electroquasistatic
approximation.20

As we shall see, the components of the eigenvectors cor-
responding to the highest eigenvalues � vary smoothly if
compared with the components of the eigenvectors corre-
sponding to the lowest eigenvalues. As consequences, the
characteristic wavelengths of the longitudinal modes de-
crease as their natural frequencies increase, whereas the
characteristic wavelengths of the transverse ones increase.

In the ideal case of lossless metallic nanoparticles, it is
always possible to excite a certain mode by choosing the
frequency of the external electric field coinciding with the
resonance frequency of that mode. In the real case, due to the
presence of losses, this possibility depends mainly on three
factors: �i� the intensity of the coupling coefficient cm of the
mode with the external electric field, �ii� the bandwidth of
the mode response functions Rm���, and �iii� the detuning, in
terms of resonance frequency, from the adjacent modes.

The dipole moment distribution induced by an external
uniform electric field only depends on V0�0E0, the polariza-
tion of the external electric field, and the following dimen-
sionless groups of physical variables: AS, � /�p, and rc /dc.
Let us consider the difference of the resonance frequencies
of two adjacent modes uq and uq+1. For AS� �rc /dc�3 we
have approximately 	by using Eq. �27�
:

��q+1 − �q� � �p

��S�

6�AS
� rc

dc
�3

��q+1 − �q� . �36�

To improve the selectivity of the nanoparticle chain, we need
to increase ��q+1−�q�. This may be obtained both by reduc-
ing AS, increasing ��S�, and increasing rc /dc. The polarization
parameter �S only assumes two values, −2 and 1 for longi-
tudinal and transverse polarizations, respectively. Since a
particle cannot penetrate the nearest ones, the geometrical
factors rc /dc and AS are not independent. For spherical par-
ticles it results AS=1 /3 and rc /dc�1 /2. Actually, we have to
impose rc /dc�1 /3 for the validity of the point-dipole ap-
proximation.

At this point, we again emphasize that our results, valid
within the dipole approximation, demonstrate in clear terms
the fundamental connection between the geometry of the ar-
rays and their spectral properties. In fact, we have shown so
far that the natural modes and the spectral properties of linear
arrays of metallic nanoparticles do not even depend on the
shape of the particles and dipole polarization but only de-
pend on the spatial distribution of the particles positions. The
particle shape and the dipole polarization only affect the re-
sulting eigenvalues 
 in the simple way given by Eq. �35�.
Furthermore, we have shown that the excitability of single
modes through a uniform external electric field is fundamen-
tally limited by optical losses.

V. RESULTS FOR A FIBONACCI LINEAR ARRAY

In this section we apply our general method to the study
of Fibonacci arrays of metal nanoparticles, which are the
chief example of deterministic aperiodic systems with quasi-
periodic Fourier spectrum.8,14,16,30–35
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Differently from the case of periodic structures, aperiodic
chains are generated when the distances between adjacent
particles are modulated by deterministic aperiodic rules. In
Fibonacci linear arrays the set of distance between adjacent
particles is composed of two values that we denote with dA
and dB. Without loss of generality, we shall assume dA�dB.
The set of distances is generated by the inflation rule: A
→AB, B→A. We shall start the Fibonacci sequence with the
seed element F0=A, therefore, F1=AB, F2=ABA, F3
=ABAAB, etc. The Fibonacci sequences display the property
Fj = �Fj−1 ,Fj−2� for j�2. In Table I the number of particles N
of the Fibonacci chain is given for several values of the
sequence index j.

In this paper we restrict our investigation to: �i� the main
properties of the dipolar plasmon modes in a linear Fibonacci
chain of spherical nanoparticles, AS=1 /3, with rc /dA=1 /3;
�ii� the coupling of the Fibonacci chain with a uniform ex-
ternal electric field. The behavior of the metal is described
through the Drude model by assuming � /�p=10−3.

The eigenvalues � and eigenvector u of the matrix Q have
been conveniently evaluated numerically by using Matlab®.
The eigenvalues and eigenvectors of the matrix Q have been
compared, respectively, with the eigenvalues and eigenvec-
tors of the matrix obtained by retaining only the nearest-
neighbor interactions in the matrix Q. The difference be-
tween the eigenvalues and the difference between the
eigenvectors may be larger than 20%.

A. Plasmonic resonance frequencies

Here we study the main properties of the resonant fre-
quencies of the plasmonic modes in a Fibonacci linear array.
The natural frequencies share the same behavior of the reso-
nant modes because the two are related via Eq. �32�.

Expression �27� gives the resonance frequencies of the
chain in terms of the eigenvalues 
 of the matrix L, the
plasma frequency, and relaxation frequency of the metal. The
eigenvalues 
 are given by Eq. �36� uniquely in terms of the
geometrical parameters of the array and of the mode polar-
ization. By combing Eqs. �27� and �36� we obtain for the
resonance frequencies �m

�m = �p�AS −
1

4
� �

�p
�2

+
�S

3
� rc

dc
�3

�m for s = P, � ,

�37�

where AP=Ax, A�=Ay ,Az, �P=−2, ��=1, and �m are the
eigenvalues of the matrix Q given by Eq. �35�, which only
depends on the positions of the nanoparticle centers. Expres-
sion �37� clearly highlights the role of the shape, size, and
geometrical arrangement of the nanoparticles and the role of
the mode polarization. In particular, as we have already em-
phasized, the resonance frequencies uniquely depend on the

geometrical arrangement of the nanoparticles through the ei-
genvalues �. For this reason we start investigating the gen-
eral behavior of the eigenvalues �, which are ordered in such
a way �1��2� . . . ��q� . . . ��N. Here we always refer to
a Fibonacci chain with index j=10; corresponding to N
=145.

Figure 1�a� shows the eigenvalue � versus its index q
expressed in percentage of the maximum index N for several
values of the interdistance ratios dB /dA. The eigenvalues �
cover almost uniformly the interval �−1.8031. . . ,2.4040. . .�.
In the limiting case of dB /dA=1, the Fibonacci array reduces
to a periodic array with equally spaced particles. For dB /dA
�1, plasmonic gaps arise in the eigenvalue curves.14 For
dB /dA=1.25 the eigenvalue curve shows several gaps. The
gaps around q=34, q=55, q=89, and q=110 become wider
as the ratio dB /dA increases. On the opposite, the remaining
gaps become narrower and their width reduces to zero with
increasing dB /dA ratio. Therefore, the plasmon spectral gaps
in an aperiodic deterministic array are a direct consequence
of the aperiodic geometrical arrangement of the constituent
nanoparticles along the chain, and the band-gap positions can
be accurately predicted. In order to quantitatively understand
the connection of Fibonacci band-gap positions and the ar-
rays geometry, we show in Fig. 1�b� the amplitude of the
discrete Fourier transform �DFT� of the Fibonacci sequence
dA ,dB ,dA ,dA ,dB ,dA ,dB , . . . versus the normalized spatial fre-
quency expressed as 2��N−1� /Nl, where l denotes the chain
length. We can see form Figs. 1�a� and 1�b� that the normal-
ized indexes at which the gaps arise match exactly the nor-
malized frequencies of the spatial Fourier components of the
Fibonacci sequence with large amplitudes. It is also evident
that the largest gaps correspond to the Fourier components
with the highest amplitudes. As dB /dA increases, only the
gaps corresponding to the spatial Fourier components with
the four largest amplitudes remain in the dispersion diagram
that reduces to five segments parallel to the horizontal axis.
For dB /dA�5 the eigenvalues � tend to five values −1.353
�1�q�33�, −1.000 �34�q�56�, −0.125 �57�q�89�,
+1.000 �90�q�112�, and +1.478 �113�q�145�.

This behavior is general, and it is related to the fact that
Fibonacci chains are generated according to cube-free and
recurrent mathematical sequences.30,36,37 In the limit dB /dA
→�, only the four gaps corresponding to the spatial Fourier
components with the four largest amplitudes remain in the
Fibonacci dispersion diagram. The eigenvalues � exactly as-
sume the five values −1.353. . ., −1.000, −0.125, 1.000, and
the system becomes completely degenerate. In the Fibonacci
chains with odd indexes the eigenvalues additionally assume
the value zero.

Let us now discuss in detail the origin of this degeneracy.
In the limit dB /dA→�, the array becomes a chain of thee
types �one particle, two particles, and three particles� of iso-
lated clusters and the eigenvalue problem can be solved ana-
lytically. Indeed, since Fibonacci sequences are cube free,

TABLE I. The number of particles N of the Fibonacci chain is given for several values of the sequence index j.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N 3 4 6 9 14 22 35 56 90 145 234 378 611 988 1598
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the symbol A can consecutively occur only one or two times
while the symbol B occurs consecutively only once. As a
consequence, for dB /dA→� we can only have clusters com-
posed of at most one, two, or three particles. The eigenvalue
� of a single isolated particle is equal to zero; the eigenval-
ues � of two interacting nanoparticles are −1 and +1; the
eigenvalues � of three equally spaced nanoparticles are �1
+3�57� /16�1.478, −0.25, and �1−3�57� /16�−1.353. The
number of degeneracy of each of them is equal to the number
of corresponding clusters in the chain. In addition, since Fi-
bonacci sequences terminates with alternating symbols �A or
B� at each generation, in the Fibonacci sequences with odd
generation indexes, there is one isolated particle at the end of
the chain �cluster B�.

Once the eigenvalues � has been evaluated, by using ex-
pression �38� we can calculate the resonance frequencies of
the plasmon modes. Figures 1�c� and 1�d� show the reso-
nance frequencies �m normalized to the plasmon frequency
�p versus the modal index m for two different mode polar-
izations and in the two cases dB /dA=1 and dB /dA=2, using

AS=1 /3, rc /dc=1 /3, and � /�p=10−3. The resonance fre-
quencies are ordered in such a way that �1��2� . . .
��m� . . . ��N. Since the interaction between the longitu-
dinal modes is stronger than the interaction between the
transverse ones,26 the width of the gaps in the dispersion
diagram for the longitudinal modes 	Fig. 1�c�
 is roughly
twice as large compared to the width of the gaps in the dis-
persion diagram for the transverse modes 	Fig. 1�d�
. We
emphasize that, in the general case of differently shaped par-
ticles of different sizes, the width of the gaps additionally
depends on the nanoparticle shapes and sizes as well as the
geometric arrangement along the chain. However, this only
affects the components of the matrix A and nothing else
changes in the formulation of the general problem.

By summarizing, the above results clearly demonstrate
that the main properties of the resonance �natural� frequen-
cies of a linear nanoparticle chain may be studied conve-
niently by analyzing the dispersion diagrams for the eigen-
values � of the matrix Q, which describes the geometrical
arrangement of the nanoparticles. We have found a universal
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behavior of the dispersion diagram of linear Fibonacci array
rooted in the cube-free property of Fibonacci sequences. In
particular, we explained the formation of four large gaps at
the normalized indexes matching the normalized Fourier
components of the Fibonacci sequence with the highest am-
plitudes. For values of dB /dA close to one, plasmonic band
gaps open due to the resonant coupling between the modes
of an underlying periodic lattice with period dA and particle
number N, and the Fourier components of the Fibonacci ar-
ray with large amplitudes. For values of dB /dA much larger
than one, the chain reduces to a set of noninteracting clusters
composed of one, two, or three particles. In this case, the
system has a strong degeneracy with four or five distinct
natural frequencies, depending on the parity of the Fibonacci
generation index.

B. Plasmon dipolar modes

Here we study the plasmon dipolar modes of the Fi-
bonacci linear arrays. They are the eigenvectors of the matrix
Q defined as in Eq. �34�. Therefore, the plasmon dipolar
modes of a linear array, unlike their resonance frequencies,
only depend on the geometrical arrangement of the nanopar-
ticles in the chain. For the reasons discussed above, we will
only consider the longitudinal-mode polarization. The dipo-
lar modes will be ordered according to the order for the
resonance frequencies of the longitudinal modes.

The localization character of the plasmon modes is de-
scribed by the participation ratio defined as14

P =
1

N

�u�2
2

�u�4
4 . �38�

Since the eigenvectors are all normalized so that �u�2=1, the
participation ratio yields a quantitative measure of the local-
ization degree of the eigenvectors. The eigenmodes with
smallest participation ratios are strongly localized.

For dB /dA=1, the eigenvectors of the matrix Q are the
dipolar modes of an aperiodic array with equidistant nano-
particles. The elements of the eigenvector corresponding to
the largest eigenvalue �N are given by the samples of the
sine function sin	�h / �N+1�
 for h=1,2 , . . . ,N. Therefore,
the modes corresponding to largest eigenvalues � are those
with the largest characteristic wavelengths. On the opposite,
the modes corresponding to the smallest eigenvalues � are
those with the shortest characteristic wavelengths. The par-
ticipation ratios of the dipolar modes are almost uniform
around the value of 0.671. Indeed, the dipolar modes of a
periodic linear array are all extended.

As the ratio dB /dA increases, the participation ratio de-
creases and the modes become progressively more localized
in different areas of the chain. Figure 2 shows the participa-
tion ratio vs the modal index m for �a� dB /dA=1.25 and �b�
dB /dA=2.0. As the ratio dB /dA increases, the participation
ratio decreases and becomes strongly oscillating. In particu-
lar, the smallest value of the participation ratio, M
� min

m�	1,N


�Pm�, decreases as the ratio dB /dA increases. Figure

3�a� shows log10�M� versus dB /dA for several values of the
Fibonacci generation index. As dB /dA varies from 1 to 1.5,

M decreases abruptly by roughly one or two orders of mag-
nitude depending on the Fibonacci index j. For dB /dA�1.5,
M continues to decrease as dB /dA increases but more slowly.
Therefore, the modes become strongly localized as dB /dA
moves from one. The participation ratio also varies as the
Fibonacci index varies. In Fig. 3�b� we show R� ln�M� as
function of the Fibonacci index j for three values of dB /dA.
The quantity R decreases as j increases. For large values of
dB /dA the decrease in R terminates with an oscillation fol-
lowed by a plateau. As it results from Fig. 3�b� the decrease
in R is adequately described by a linear interpolation func-
tion R=c0−c1j 	Fig. 3�b�, full lines
. In Table II the coeffi-
cients c0 and c1 are given for the three cases. Both the coef-
ficients depend on dB /dA. Then the participation ratio
decreases as j increases with an exponential scaling law
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whose decay constant is given by c1. As the ratio dB /dA
increases, the decay constant increases slightly.

Some remarks on the behavior of M as a function of
dB /dA 	Fig. 3�a�
 are now appropriate. The behavior of the M
functions associated to odd Fibonacci indexes are smooth

while those associated to even Fibonacci indexes show pro-
nounced edges and kinks. The origin of this nonmonotonic
behavior can simply be understood by the fact that the mode
with minimum participation ratio changes abruptly for cer-
tain values of the dB /dA ratio. This is demonstrated by plot-
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ting the index mmin of the mode with the minimum partici-
pation ratio as function of dB /dA, as shown in Figs. 3�c� and
3�d�, and by comparing it with the trend of the function M.
When the Fibonacci index is odd mmin only changes for val-
ues of dB /dA near one while for larger values of dB /dA, mmin
is constant, as shown in Fig. 3�c�. In these chains, the mode
with the minimum participation ratio is always localized on
the right-hand side for values of dB /dA much larger than one
because, as already discussed, in these chains there is always
a particle well isolated from the others at the right end side
�cluster B�. On the other hand, when the Fibonacci index is
even, mmin oscillates for large values of dB /dA because under
this condition only clusters with two or three particles can
exist 	Fig. 3�d�
. Figure 3�e� shows the transition from the
35-th mode to the 14-th mode as dB /dA crosses 1.9 and Fig.
3�f� shows the transition from the 14-th to the 30-th mode as
dB /dA crosses 3.4 in the Fibonacci chain with j=8. In the
intervals �1.9, 3.4� and �3.4, 3.7� M has local minima at
dB /dA�3 and dB /dA�3.5 because the 14-th and the 30-th
modes are more localized for dB /dA�3 and dB /dA�3.5, re-
spectively.

In Fig. 4 we show the spatial distributions of the most
localized modes in a Fibonacci linear array with j=10. Fig-
ures 4�a�–4�c� show the distributions of the 34-th mode, cor-
responding to the longitudinal resonance frequency �34
�0.553�p, for dB /dA=1, dB /dA=1.25, and dB /dA=2.0. Fig-
ures 4�d�–4�f� show the distributions of the 73-th mode, cor-
responding to the longitudinal resonance frequency �73
�0.580�p, for the same values of dB /dA. In both cases, the
modes become strongly localized as dB /dA increases accord-
ing to the behavior of the participation ratio shown in Fig. 2.
Both the modes in the periodic limit are extended along the
chain.

The plasmonic band gaps which open in the Fibonacci
chains can be completely understood by studying the
pseudodispersion diagrams of the modes,14,38 as shown in
Fig. 5 for the longitudinal polarized modes and several val-
ues of dB /dA. The natural frequencies of the modes, normal-
ized to the plasma frequency, are represented on the ordinate
axis while wave numbers K, normalized to � / l, are repre-
sented on the abscissa axis. The intensity of the Fourier com-
ponents of each Fibonacci mode, calculated by the Fourier
transform of the eigenvectors, is represented on a black–
white intensity scale. Figure 5�a� shows the well-known dis-
persion curve of the longitudinal plasmon modes in a peri-
odic array. As dB /dA deviates from one, the dispersion curve
breaks into several Fibonacci pseudogaps, as shown in Figs.
5�b� and 5�c�. As dB /dA increases even further, the gaps
widen until the branches of the dispersion curve reduce to a

set of five segments parallel to the wave vector axis, as
shown in Figs. 5�d�–5�f�. The branches of the pseudodisper-
sion curves show positive slopes since the eigenvalues � of
the modes with the largest spatial frequencies and the polar-
ization parameter �P are negative. The pseudodispersion dia-
gram of the transverse polarized modes is very similar to the
one of the longitudinal modes as it only differs for the slope
and the bandwidth �not reported here�. In this case, the
branches of the pseudodispersion curve show a negative
slope because the polarization parameter �� is positive. In
summary, our calculations of the pseudodispersion diagrams
of the dipolar modes in Fibonacci chains explain in very
clear terms the origin of the plasmonic band-gap formation
as dB /dA increases above the value of one.

C. Coupling with a uniform external electric field

Here we study the coupling of a linear Fibonacci chain
with an external electric field E0 that is uniform and longi-
tudinally polarized. The main features of the coupling are
highlighted by studying the behavior of the electric-field en-
hancement and of the extinction cross sections.

The enhancement of the electric field is defined as the
ratio between the amplitude of the induced electric field E
and the amplitude of the external electric field E0. We will
denote with Ep the electric-field amplitude at the intermedi-
ate points between adjacent nanoparticles along the chain
axis with abscissa x̄p= �xp+xp+1� /2 where xh denotes the ab-
scissa of the center of the h-th particle and p=1,2 , . . . ,N
−1. We will consider the extinction cross section, normalized
to the “geometrical” extinction cross section Cext

�0��V0�p /c
where c denotes the light velocity in the vacuum. Here we
will always refer to a Fibonacci chain with index j=10.

It is interesting to study the behavior of the maximum of
the electric-field enhancement max

p�	1,N−1


�Ep /E0� along the

chain axis. In Figs. 6�a�–6�d� we show max
p�	1,N−1


�Ep /E0� ver-

sus the resonance frequency �m of the m-th mode, normal-
ized to the plasma frequency, obtained by tuning E0 on �m
for several values of dB /dA. In Figs. 6�e� and 6�f� we show
the participation ratios versus �m for dB /dA=1.25 and
dB /dA=2. For dB /dA=1 	Fig. 5�a�
 the largest value of the
enhancement is obtained by tuning E0 on �1�0.542�p and

max
p�	1,N−1


�Ep /E0� decreases rapidly as �m increases. Only the

modes with index m=1,3 , . . . couple significantly with the
external source and the coupling coefficients tend to zero as
the resonance frequency of the mode increases. We observed
that the maximum enhancement of the modes with �m
��13�0.527�p is less than 103. As dB /dA increases, the
maximum enhancement of the modes for which �1��m
��55�0.556�p rapidly increases, as shown in Figs.
6�b�–6�d�. For dB /dA=2 	Fig. 6�d�
 the maximum enhance-
ment is of the order of 103 for �1��m��55 and has four
maxima: the absolute maximum at �1 and three local
maxima at �18�0.532�p, �34�0.546�p, and �43
�0.554�p. The maximum enhancement also features several
discontinuities. The largest discontinuities are around �22
�0.544�p, �34, and �55. The enhancement reduces roughly

TABLE II. The coefficients c0 and c1 are given for the three
cases. Both the coefficients depend on dB /dA.

dB /dA c0 c1

1.25 0.86 0.44

2.0 0.45 0.47

3.0 0.32 0.49

5.0 0.28 0.48
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of a factor of 30 moving from �55 to �56�0.558�p. This is
a consequence of the wide gap situated at �56 in the disper-
sion diagram 	Fig. 1�c�
 and of the low coupling of the uni-

form external source with the modes with resonance frequen-
cies greater than �56. The 34-th mode is one of the modes
with the minimum participation ratio in the interval 1�m
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 34-th mode ��34�0.553�p� and 	�d�–�f�
 73-th mode ��73
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�55, as shown in Figs. 6�e� and 6�f�. Therefore an external
electric field tuned on the resonance frequency of the 34-th
may induce a dipole distribution that generates a strongly
enhanced and localized electric field. However, it is impor-
tant to notice that the electric-field enhancement correspond-
ing to the second most localized mode in the Fibonacci chain
�namely, the 73-th mode� is less than 100, clearly indicating
that mode localization and field enhancement are not always
correlated in aperiodic chains.

Figures 7 shows the distribution of the enhancement of
the electric Ep /E0 versus x̄p / l, induced by a uniform external
electric field E0 tuned on the resonance frequency of the
34-th mode for dB /dA=1, dB /dA=1.25, and dB /dA=2. In the
periodic case, an enhanced field extends along the interior
part of the chain axis, as shown in Fig. 7�a�. For dB /dA
=1.25, differently from the periodic case, the enhancement is
more localized on the right end side of the chain while for

dB /dA=2.0 it becomes strongly localized. On the other hand,
for values of dB /dA larger than four, many electric-field spots
are distributed along the chain. This is due to the strong
degeneracy of the system as we have seen before. In this case
all the small clusters are individually excited at resonance
with E0.

Figures 8�a� and 9�a� show max
p�	1,N−1


�Ep /E0� versus � /�p

for dB /dA=1 and dB /dA=2.0, respectively; Figs. 8�b� and
9�b� show the normalized extinction cross section versus
� /�p for the same cases. We notice that the maxima of

max
p�	1,N−1


�Ep /E0� and Cext /Cext
�0� occur for the same values of

the frequency. For dB /dA=1 the curves max
p�	1,N−1


�Ep /E0� and

Cext /Cext
�0� have only one maximum at � /�p�0.5235, which

is the resonance frequency of the 1-th mode. Unlike the pe-
riodic case, for dB /dA=2.0 both the curves have four peaks

FIG. 5. Linear Fibonacci chain with j=10: pseudodispersion diagrams of the longitudinal modes for �a� dB /dA=1, �b� dB /dA=1.1, �c�
dB /dA=1.25, �d� dB /dA=1.5, �e� dB /dA=2, and �f� dB /dA=5.
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that correspond to the resonance frequencies of the modes
for which max

p�	1,N−1


�Ep /E0� is maximum 	see Fig. 9�b�
. In

Figs. 9�a� and 9�b�, the first peak �from the left� is the highest
one, and occurs at the resonance frequency of the 1-th mode.
The second peak occurs at the resonance frequency of the
18-th mode, the third peak occurs at the resonance frequency

of the 34-th mode, and the fourth peak occurs at the reso-
nance frequency of the 43-th mode. The depression between
the 18-th and the 34-th modes, in both curves, is due to the
gap at �34 in the dispersion diagram 	Fig. 1�c�
. For frequen-
cies greater than the resonance frequency of the 46-th mode,
the enhancement and the extinction cross section falls to zero
because of the gap at �56 in the dispersion diagram 	Fig.
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FIG. 6. Linear Fibonacci chain with j=10: maximum of the enhancement of the electric field max
p�	0,N−1


�Ep /E0� vs �m /�p for E0 tuned on

the resonant frequency of the m-th mode �m for �a� dB /dA=1, �b� dB /dA=1.25, �c� dB /dA=1.5, and �d� dB /dA=2. Participation ratio vs the
normalized mode resonance frequency �m /�p for �e� dB /dA=1.25 and �f� dB /dA=2.
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1�c�
 and the weak coupling of the modes with �m��56
with the external electric field. The losses affect dramatically
the response of the chain to an applied electric field. The

results discussed here have been obtained by assuming
� /�p=10−3. As the quantity � /�p increases the 3 dB band of
the mode response functions also increases and it becomes
more difficult to select localized modes. Indeed, as the ef-
fects of the losses increase, both the enhancement and the
extinction cross-section curves tend to a curve with only one
maximum.

By summarizing, electric fields with high amplitudes
�thousand times the amplitude of the uniform external elec-
tric field� can be obtained and the maximum enhancement of
the electric field along the chain axis first increases as the
Fibonacci index increases for fixed dB /dA, then decreases
slightly, and finally tends to a constant value.
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VI. CONCLUSIONS

We have proposed a simple and effective computational
approach, based on the electric quasistatic approximation, to
analyze both the dipolar modes of aperiodic deterministic
arrays of metal nanoparticles and their coupling with an ex-
ternal electric field. The proposed approach has several sig-
nificant advantages. A simple calculation yields the eigenfre-
quencies and plasmon modes of arbitrary chain geometry.
Particles with ellipsoidal shape and arbitrary dielectric func-
tions can be treated. The equations governing the plasmon
oscillations are formulated in such a way as to clearly high-
light the role of the geometrical arrangement of the particles
on one side, and particle shape, dielectric response, and po-
larization on the other side. We have found a predictive and
efficient way of calculating the plasmonic band-gap positions

in general aperiodic chains, and we have clearly correlated
the geometry of the aperiodic chains with the resulting spec-
tral properties.

The method has been specifically applied to the case of a
linear Fibonacci chain of metal nanoparticles. We have ex-
plained the origin and the mechanism of band-gap formation,
and correlated their frequency positions with the spectral
components of the Fibonacci chain. We have examined the
behavior of the participation ratio and the localization prop-
erties of Fibonacci modes, and we have studied the coupling
of the nanoparticle array with an external electric field. Fi-
nally we discussed the behavior of the electric-field enhance-
ment and extinction cross sections of Fibonacci chains.

The results of our investigation demonstrate the potential
of the proposed computational approach for the accurate de-
sign of aperiodic plasmonic devices. We believe that the pos-
sibility to accurately understand and predict the complex be-
havior of enhanced localized plasmon fields in resonant
aperiodic environments can have a significant impact for the
fabrication and optimization of active nanoplasmonic de-
vices such as plasmonic sensors, compact nonlinear optical
elements, and engineered substrates for surface enhanced Ra-
man scattering �SERS� applications.
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APPENDIX A

The expression of the depolarization factor At is given by
�e.g., Ref. 22�

At =
axayaz

2
�

0

� ds

�s2 + at
2���s + ax

2��s + ay
2��s + az

2�
with t

= x,y,z . �A1�

The quantities Ax ,Ay ,Az verify the properties:

Ax + Ay + Az = 1, �A2�

Ax � Ay � Az. �A3�

The integrals 	Eq. �A1�
 may be evaluated analytically in
some notably cases: prolate spheroid, oblate spheroid, and
sphere. For a sphere it is Ax=Ay =Az=1 /3. For a prolate
spheroid ax=ay �cigar shaped� it is Ay =Ax and

Az =
1 − e2

e2 �− 1 +
1

2e
ln

1 + e

1 − e
� , �A4�

where

e =�1 −
ax

2

az
2 �A5�

is the eccentricity of the ellipsoid. The shape of the prolate
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�Ep /E0� vs � /�p; �b� extinction cross section vs � /�p.
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spheroid ranges from a needle �e=1, Az=0� to a sphere �e
=0, Az=1 /3�. For an oblate spheroid ay =az �pancake shaped�
it is Ay =Az,

Az =
g�e�
2e2 ��

2
− tan−1g�e�
 −

g2�e�
2

, �A6�

where now

e =�1 −
az

2

ax
2 , �A7�

and

g�e� =�1 − e2

e2 . �A8�

The shape of the oblate spheroid ranges from a disk �e=1,
Az=0� to a sphere �e=0, Az=1 /3�. In both cases Az varies in
the interval �0,1/3� and tends monotonically to 0 as e→1.
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